|
|
|
The Philosophical Breakfast Club by Laura J. Snyder | ||||
If one person can change the world, four might do 16 times as much.The Philosophical Breakfast Club: Four Remarkable Friends Who Transformed Science and Changed the World by Laura J. Snyder (Broadway, 2011) is the story of Charles Babbage, William Herschel, William Whewell, and Richard Jones. They met at Cambridge about 1810. By 1860, through their hard work and consistent focus, modern science acquired the inductive method and public involvement (and government funding), that resulted in science evolving from a hobby to a profession.
Snyder writes well. The book is engaging, compelling, sometimes challenging. We accept that science proceeds by paradigm shifts, but the advent of modern science was itself a radical redefinition. At the start of the 19th century, what we call “science” was “natural philosophy” and its practitioners were philosophers. It was at the first meeting of the British Association of the Advancement of Science on June 24, 1833, that William Whewell answered a challenge from Samuel Taylor Coleridge, and spontaneously offered the word “scientist.”
They all endorsed the inductive method of Francis Bacon. This was not the so-called "strong induction" of Karl Popper and the problem of the black swan which holds that final truth is always elusive because some new discovery will invalidate all we know. Rather, they wrote books and articles about an objective scientific method that begins with observations. Observations become inductive generalities. Those broad descriptions must be fit to a natural law, a deductive truth. However, knowledge does not proceed from pure deduction independent of experience.
Charles Babbage launched the first assault, making his work a personal crusade against the establishment. Reflections on the Decline of Science in England (1830) severely criticized the Royal Society in general and its leaders in particular for creating a social environment inhospitable to professional science, Richard Jones began by addressing economics with An Essay on the Distribution of Wealth, and on the Source of Taxes (1831). It was necessary to begin there because economics in particular was mired in error through rationistic, deductive theories from Thomas Malthus and David Ricardo. Jones demonstrated with statistics - also a new development - that life was getting better, not worse, even for the poorest. Whewell wrote History of the Inductive Sciences (1837) and Philosophy of the Inductive Sciences (1840). Herschel's Preliminary Discourse on the Study of Natural Philosophy (1840) was the introductory volume of Dionysius Lardner's Cabinet Cyclopoedia. His 1859 work, Physical Geography, was part of the Encyclopedia Britannica.
Only because The Philosophical Breakfast Club is praiseworthy do a couple of egregious errors stand out. Discussing the grief of William Whewell at the passing of his wife, Cordelia, Snyder identifies the elegiac as “a classical form of funereal verse famously employed by Ovid in the seventh century BCE.” (page 311) The elegiac may have its roots in archaic Greek culture, but Ovid (Publius Ovidius Nasso) lived some 600 years later. An editor should have caught that. An editor was probably responsible for the horrendous typographical error giving the speed of light as 310,740,000 miles per second rather than meters per second. (page 364)
Also, Snyder accepts as given the benefits of government funding of science. Certainly, despite its costs and lack of completion, Babbage's Difference Engine would have been a great benefit, had it been constructed. His Analytical Engine would have compounded the return on investment from the public coffers. That said, of course, a consistent advocate of capitalism would have underscored the many private fundings of pure research through "public subscription" -- today called "crowd sourcing." But that was not the book that Snyder wrote. Taken on its own merits, The Philosophical Breakfast Club remains an inspiring story.
Snyder proves her point first by telling of Darwin, who spent many hours in the company of Babbage. She reinforces the lesson with an introduction to the work of James Clerk Maxwell whose equations about electro-magnetism opened the door to the theory of relativity, which Einstein called “the electrodynamics of moving bodies.” | ||||
|